Hierarchical cupric oxide nanostructures on copper substrate for cold cathode emission: an experimental venture with theoretical correlation.

نویسندگان

  • Swati Das
  • Subhajit Saha
  • Dipayan Sen
  • Uttam Kumar Ghorai
  • Kalyan Kumar Chattopadhyay
چکیده

In this paper we report a facile route for the synthesis of controlled CuO nanoarchitectures directly grown on a copper substrate by a one-step simple chemical route with varying concentration of non-ionic surfactant PEG-6K. The phase purity and degree of crystallinity of the as-developed nanostructures were systemically investigated by X-ray diffraction, X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy (HRTEM). A detailed analysis by field emission scanning electron microscopy confirmed the uniformity of the prepared nanostructures on the substrates. These architectures displayed substantial improvement of field emission properties with respect to other structures of CuO reported so far. A particular nanostructure (needle) among them showed a down shift of the turn-on field to 2.2 V μm(-1) coupled with a good enhancement factor (β) ∼516, which are deemed as sufficient for electron emission based applications such as field emission displays and vacuum nanoelectronic devices. The origin of this efficient field emission from CuO nanoarchitectures, were probed computationally by investigating the local electric field distribution through finite element based simulation method using the ANSYS Maxwell simulation package.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient and persistent cold cathode emission from CuPc nanotubes: a joint experimental and simulation investigation.

In the current report, chemically synthesized copper phthalocyanine (CuPc) nanotubes are shown to exhibit unprecedentedly well cold cathode emission characteristics with turn-on field (3.2 V μ m(-1)) and stable emission during long intervals (200 min). Simulation of electric field distribution via finite element method around an isolated nanotube emitter in a manner parallel to the experimental...

متن کامل

The effect of time and temperature on the growth and morphology of cupper oxide nanostructures

Cupper Oxide structures with a variety of novel morphologies are synthesized using cupper foil as substrate via a solution route. The structure, morphology and phase of the as-synthesized nanostructures are analyzed by various techniques. SEM images show gradual development of hierarchical structures of copper oxide with different morphology. In order to study the effect of reaction time and te...

متن کامل

Nano Copper Oxide-Modified Carbon Cloth as Cathode for a Two-Chamber Microbial Fuel Cell

In this work, Cu₂O nanoparticles were deposited on a carbon cloth cathode using a facile electrochemical method. The morphology of the modified cathode, which was characterized by scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) tests, showed that the porosity and specific surface area of the cathode improved with longer deposition times. X-ray photoelectron spectroscopy (XPS...

متن کامل

Sonochemical-Assisted Synthesis of Copper Oxide Nanoparticles and Its Application as Humidity Sensor

Cupric oxide nanostructures were synthesized via a simple reaction between copper nitrate and sodium hydroxide using a sonochemical-assisted method. The synthesized CuO was then characterized using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared, ultraviolet-visible and photoluminescence spectroscopy. Our studies show that the CuO na...

متن کامل

Nanoporous copper oxide ribbon assembly of free-standing nanoneedles as biosensors for glucose.

Inspired by a sequential hydrolysis-precipitation mechanism, morphology-controllable hierarchical cupric oxide (CuO) nanostructures are facilely fabricated by a green water/ethanol solution-phase transformation of Cu(x)(OH)(2x-2)(SO4) precursors in the absence of any organic capping agents and without annealing treatment in air. Antlerite Cu3(OH)4(SO4) precursors formed in a low volume ratio be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Dalton transactions

دوره 44 13  شماره 

صفحات  -

تاریخ انتشار 2015